Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 33(15): 6540-51, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23575851

RESUMO

Long-term potentiation (LTP) of synaptic strength in nociceptive pathways is a cellular model of hyperalgesia. The emerging literature suggests a role for cytokines released by spinal glial cells for both LTP and hyperalgesia. However, the underlying mechanisms are still not fully understood. In rat lumbar spinal cord slices, we now demonstrate that conditioning high-frequency stimulation of primary afferents activated spinal microglia within <30 min and spinal astrocytes within ~2 s. Activation of spinal glia was indispensible for LTP induction at C-fiber synapses with spinal lamina I neurons. The cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), which are both released by activated glial cells, were individually sufficient and necessary for LTP induction via redundant pathways. They differentially amplified 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)-propanoic acid receptor-mediated and N-methyl-D-aspartic acid receptor-mediated synaptic currents in lamina I neurons. Unexpectedly, the synaptic effects by IL-1ß and TNF-α were not mediated directly via activation of neuronal cytokine receptors, but rather, indirectly via IL-1 receptors and TNF receptors being expressed on glial cells in superficial spinal dorsal horn. Bath application of IL-1ß or TNF-α led to the release profiles of pro-inflammatory and anti-inflammatory cytokines, chemokines, and growth factors, which overlapped only partially. Heat hyperalgesia induced by spinal application of either IL-1ß or TNF-α in naive animals also required activation of spinal glial cells. These results reveal a novel, decisive role of spinal glial cells for the synaptic effects of IL-1ß and TNF-α and for some forms of hyperalgesia.


Assuntos
Astrócitos/fisiologia , Hiperalgesia/fisiopatologia , Interleucina-1beta/fisiologia , Potenciação de Longa Duração/fisiologia , Microglia/fisiologia , Medula Espinal/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Astrócitos/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-1beta/administração & dosagem , Vértebras Lombares , Potenciais da Membrana/fisiologia , Microglia/metabolismo , Fibras Nervosas Amielínicas/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Receptores de AMPA/fisiologia , Receptores de Citocinas/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Medula Espinal/metabolismo , Transmissão Sináptica/fisiologia , Fator de Necrose Tumoral alfa/administração & dosagem
2.
Pain ; 145(1-2): 204-10, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19608344

RESUMO

Endogenous pain control is, in part, mediated by descending inhibition of spinal nociception via spinal release of noradrenaline. Antinociception by activation of descending noradrenergic fibres has partially been attributed to the direct inhibition of nociceptive spinal neurons. Here, we tested the alternative hypothesis: the direct excitation of inhibitory spinal interneurons by noradrenaline. Transverse lumbar spinal cord slices were obtained from adult mice expressing enhanced green fluorescent protein (EGFP) in GABAergic neurons under control of the GAD67 promoter. Recordings were made from a total of 113 EGFP-expressing neurons and non-EGFP-expressing neurons in spinal laminae II and III with the perforated patch-clamp technique. In lamina II, where mainly nociceptive afferents terminate, noradrenaline (20 microM) depolarised significantly more EGFP-labelled (41%) than non-EGFP-labelled GABAergic neurons (4%). In contrast, noradrenaline hyperpolarised significantly more non-EGFP-labelled (46%) than EGFP-labelled GABAergic neurons (20%). In lamina III, where low threshold afferents terminate, EGFP-labelled neurons were never depolarised but either hyperpolarised (25%) or not affected (75%) by noradrenaline. Depolarisations of EGFP-labelled lamina II neurons were mimicked by the alpha(1)-adrenoceptor agonist phenylephrine (10-20 microM) and abolished by the alpha(1)-adrenoceptor antagonist prazosin (2 microM). Hyperpolarisations of EGFP- and non-EGFP-labelled neurons were abolished by the alpha(2)-adrenoceptor antagonist yohimbine (2 microM). These results show that noradrenaline directly excites inhibitory (GABAergic) lamina II interneurons in addition to its inhibitory effect on (putatively excitatory) interneurons in superficial spinal dorsal horn. Both effects of noradrenaline constitute a synergism in descending inhibition of nociceptive information in the spinal dorsal horn.


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Interneurônios/efeitos dos fármacos , Norepinefrina/farmacologia , Medula Espinal/citologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Adrenérgicos/farmacologia , Análise de Variância , Anestésicos Locais/farmacologia , Animais , Bicuculina/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica/métodos , Antagonistas GABAérgicos/farmacologia , Glutamato Descarboxilase/deficiência , Proteínas de Fluorescência Verde/genética , Técnicas In Vitro , Interneurônios/classificação , Interneurônios/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp , Tetrodotoxina/farmacologia , Valina/análogos & derivados , Valina/farmacologia
3.
Science ; 325(5937): 207-10, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19590003

RESUMO

mu-Opioid receptor (MOR) agonists represent the gold standard for the treatment of severe pain but may paradoxically also enhance pain sensitivity, that is, lead to opioid-induced hyperalgesia (OIH). We show that abrupt withdrawal from MOR agonists induces long-term potentiation (LTP) at the first synapse in pain pathways. Induction of opioid withdrawal LTP requires postsynaptic activation of heterotrimeric guanine nucleotide-binding proteins and N-methyl-d-aspartate receptors and a rise of postsynaptic calcium concentrations. In contrast, the acute depression by opioids is induced presynaptically at these synapses. Withdrawal LTP can be prevented by tapered withdrawal and shares pharmacology and signal transduction pathways with OIH. These findings provide a previously unrecognized target to selectively combat pro-nociceptive effects of opioids without compromising opioid analgesia.


Assuntos
Analgésicos Opioides/efeitos adversos , Potenciação de Longa Duração , Receptores Opioides mu/agonistas , Síndrome de Abstinência a Substâncias/fisiopatologia , Sinapses/fisiologia , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/farmacologia , Animais , Cálcio/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/administração & dosagem , Ala(2)-MePhe(4)-Gly(5)-Encefalina/efeitos adversos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Potenciais Evocados , Proteínas de Ligação ao GTP/metabolismo , Hiperalgesia/induzido quimicamente , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Fibras Nervosas Amielínicas/fisiologia , Técnicas de Patch-Clamp , Piperidinas/administração & dosagem , Piperidinas/efeitos adversos , Piperidinas/farmacologia , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Remifentanil , Transdução de Sinais , Sinapses/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...